Model of the epithelium and its principal compartments

Tight junction

Epithelial cell and its junction complexes

Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Epithelial cell and its junction complexes

Interaction of epithelial cells with basement membrane

50 nm

Transport of solutes across epithelium

$$\mathbf{J}_{i} = (1 - \sigma_{\iota}) \cdot \mathbf{C}_{i} \cdot \mathbf{J}_{V} + \mathbf{P}_{i} \cdot (\Delta \mathbf{c}_{i} + \mathbf{z}_{i} \cdot \mathbf{F} / \Delta \phi \cdot \mathbf{C}_{i}) + \mathbf{J}_{i}^{akt}$$

"solvent drag"
electrodiffusion
active transport

- J_i Flux of transported molecule/ion
- σ_t Staverman reflection coefficient
- C_i Intraepithelial concentration of the solute i
- J_v Volume flow
- P_i Permeability coefficient
- Δc_i Concentration difference mucosa-serosa
- z_i Valency
- F Faraday number
- $\Delta \phi~$ Transepithelial voltage

NaCl transport in renal proximal tubule

	Ji			
Na	100 %	29 %	32 %	38 %
CI	100 %	49 %	51 %	0 %

Transport of solutes

Frog skin, urinary bladder, colon, renal collecting tubule, etc.

Transport of solutes and water

Boron & Boulpaep: Medical Physiology, 2nd Edition. Copyright © 2009 by Saunders, an imprint of Elsevier, Inc. All rights reserved.

Equivalent electrical circuit for the epithelium

Rap = parallel resistance (1/conductance) for individual ion species that move across the apical membrane

Eap = parallel electromotive forces equal to Nernst equilibrium potentials of individual ion species that move across the apical membrane

Rbl, Ebl = the same for the basolateral membrane

Ep = electromotive force of the electrogenic ion pump of the basolateral membrane (Na,K-ATPasa)

Rts = resistance of the tight junction

Epc = electromotive force corresponding to the diffusion potential of the tight junction

Rlis = resistance of the lateral intercellular space

Coupling of apical and basolateral transport

Absorbing glucose from intestinal or kidney tubule lumen involves indirect (secondary) active transport of glucose across the apical membrane and glucose diffusion across the basolateral membrane.

Mechanisms of NaCl (NaHCO₃) absorption

Outside Interstitium + 3CO2+ 30H-K⁺channel (TEA+, Ba2+) Na+ - H+ > 3Na+ exchanger (Amiloride) 3H+ 3HCM3 2K+ Na+ - K+ pump Carbonic > 3Na+ (Cuabain) anhydrase (Acetazolamide) > SHCO3 CI - 3HCO3 exchanger? 3CI-→ 3CI⁻ Cl⁻channel ?

Transcellular NaCl transport

Transcellular transport of Na+ and paracellular transport of Cl-

Transcellular NaCl transport

NaCl and water secretion

Transcellular transport of Cl- via NKCC cotransporter on the basolateral membrane and chloride channel CFTR on the apical membrane. The negative charges that move across the cell from the interstitium to lumen generate a lumen-negative voltage that can drive passive Na+ secretion across the paracellular pathway (tight junctions). The driving force is the secondary active transport of Cl- across the basolateral membrane.

Acid-base transport – luminal acidification

TZIO HURBE LACOG SUBSTICT IN

Acid-base transport – luminal alkalinization

Boron & Boulpaep: Medical Physiolo

Potassium transport

Transcellular secretion: K+ is taken up by Na-K pump across the basolateral membrane to be secreted across the apical membrane via potassium channels.

- 1. Paracellular absorption trough tight junctions.
- 2. Transcellular primarily active absorption driven by H-K-pump.

Immunoglobulin transport across polarized epithelial cells

Nature Reviews | Molecular Cell Biology

- Receptor mediated transcytosis
- Transport of IgA and IgG is mediated through the polymeric immunoglobulin receptor pIgR
- plgR is proteolytically cleaved in the cell or at the apical surface
- The cleaved extracellular domain of the receptor = secretory component (SC)
- Transport of IgG is mediated through FcRn receptor

Control of epithelial transport

- 1. Cell control "crosstalk" between apical and basolateral membrane protection against the increasing concentration of osmolytes in the cytoplasm
- 2. Tissue control e.g.. enteric nervous system,
- 3. Organism control e.g. hormones calcitriol, aldosterone, vasopressin

Hormone regulatory pathways – endocrine, paracrine, autocrine, intracrine Nervous regulatory pathways – symphatetic, parasymphatetic and enteric nervous systems Immune regulatory pathways – mucosal immune system

